
www.manaraa.com

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

A light-weight middleware framework for fault-tolerant and secure A light-weight middleware framework for fault-tolerant and secure

distributed applications distributed applications

Ian Jacob Baird

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Baird, Ian Jacob, "A light-weight middleware framework for fault-tolerant and secure distributed
applications" (2007). Masters Theses. 6721.
https://scholarsmine.mst.edu/masters_theses/6721

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6721?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6721&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

www.manaraa.com

A LIGHT-WEIGHT MIDDLEWARE FRAMEWORK FOR FAULT-TOLERANT

AND SECURE DISTRIBUTED APPLICATIONS

by

IAN JACOB BAIRD

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI–ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2007

Approved by

Bruce McMillin, Advisor Ann Miller

Fikret Ercal

www.manaraa.com

Copyright 2007

Ian Jacob Baird

All Rights Reserved

www.manaraa.com

iii

ABSTRACT

This thesis outlines the design, implementation, and performance of a lightweight

middleware framework for interprocess communication with an update log propaga-

tion algorithm. The system was designed and implemented using a point-to-point

based lightweight middleware framework and compared to a similar system imple-

mented utilizing CORBA. The implementation difficulty and performance of two

model problems were compared and the efficiency of the lightweight middleware

framework was found to exceed that of the traditional CORBA-based solution, while

also having the advantage of hiding more of the implementation complexity from

the application developer. While the lightweight middleware framework based solu-

tions were more efficient and created smaller message sizes for equivalent message

payloads, the CORBA-based solutions performed better with respect to raw message

passing performance. Subtleties involved in the underlying network protocol and large

amounts of concurrency made the framework very difficult to implement. Issues with

concurrency in the interpreter used could possibly hinder the scalability of a solution

utilizing the lightweight middleware framework on multi-core hosts.

www.manaraa.com

iv

ACKNOWLEDGMENT

I dedicate this work to my wife Stacy Baird, and to my parents, Barbara and

Jason Baird. Without their support, this work would have been impossible.

I would also like to thank Dr. Bruce McMillin, for without his guidance and

support I would have never successfully explored the realm of graduate level Com-

puter Science. Any acknowledgement would be incomplete without an expression of

my utmost gratitude to my committee members, Dr. Ann Miller and Dr. Fikret

Ercal, whose guidance I am incredibly grateful for. I would also like to acknowledge

Dr. Mariesa Crow and the NSF IGERT Fellowship, which provided the stipend and

funding which made my post-graduate education possible.

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENT .. iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . viii

SECTION

1. INTRODUCTION .. 1

1.1. MESSAGE-PASSING .. 1

1.2. MIDDLEWARE .. 2

1.2.1. CORBA.. 2

1.3. MIDDLEWARE AND MESSAGE-PASSING RELATIONSHIP 4

1.4. PYTHON .. 5

1.4.1. Why Python?. 6

1.4.2. Python Pickle Construct . 6

1.5. PYTHON DISTRIBUTED LOGGING SYSTEM (PDLS) 6

2. SURVEY .. 7

2.1. WEAKLY CONSISTENT MESSAGE PASSING TECHNIQUES 7

2.1.1. Epidemic Techniques. 7

2.1.2. Anti-Entropy . 8

2.1.3. Update Log . 9

2.2. FTCORBA.. 11

3. TECHNIQUE .. 13

3.1. PYTHON DISTRIBUTED LOGGING SYSTEM .. 13

3.1.1. The Architecture of PDLS . 13

3.1.2. Message Passing . 15

3.1.3. Network I/O Implementation . 17

3.1.4. Name Resolution . 19

3.1.5. Network Rendezvous and Select . 19

3.2. EVENT PROPAGATION USING CORBA ORB INTERCEPTORS
WITH TAO .. 20

3.2.1. libLazyDB Implementation and Design . 20

3.2.2. Interceptor Implementation and Design . 21

www.manaraa.com

vi

3.3. PROFILING THE SYSTEMS. 22

4. MODEL PROBLEMS . 24

4.1. BOUNDED-BUFFER PROBLEM .. 24

4.2. BOOTS2 SYSTEM.. 25

5. RESULTS . 29

5.1. LINEAR MODEL OF POINT-TO-POINT COMMUNICATION 29

5.2. BOUNDED BUFFER.. 31

5.3. BOOTS SYSTEM .. 36

5.4. ISSUES FACED DURING IMPLEMENTATION .. 37

5.4.1. Latency Sensitivity. 37

5.4.2. Pervasive Concurrency - Race Conditions . 37

5.4.3. Python Interpreter Concurrency . 37

6. CONCLUSIONS . 39

7. FUTURE WORK.. 40

7.1. PROTOCOL IMPROVEMENTS . 40

7.2. FRAMEWORK IMPROVEMENTS . 40

7.3. APPLICATIONS . 41

APPENDICES

A. BUFFER Implementation . 42

B. PDLS User Manual . 51

BIBLIOGRAPHY .. 70

VITA . 72

www.manaraa.com

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Intra-ORB and Inter-ORB Messaging . 4

1.2 Abstract Middleware and Message-passing on Two Distributed System
Nodes. 4

3.1 Sequence Diagram Showing a Typical Interaction between the Applica-
tion and the PDLS Service Layers . 15

4.1 Bounded Buffer Problem . 25

4.2 UML Collaboration Diagram Showing the Processing of An Order within
the BOOTS2 System . 27

4.3 UML Collaboration Diagram Showing the Interaction of the BOOTS2
Nodes with the Auditor, Auditor Buffer, Operator, and Security Officer
Processes . 28

5.1 System Runtime vs. Message Size . 31

5.2 Total Traffic (Bytes Sent) vs. Payload Size . 32

5.3 System Runtime vs. Payload Size. 33

5.4 Overhead Imposed by the CORBA Middleware on the Bounded Buffer
Problem . 34

5.5 Overhead Imposed by the PDLS Middleware on the Bounded Buffer
Problem . 35

www.manaraa.com

viii

LIST OF TABLES

Table Page

2.1 Casual Log Event Record Composition . 10

3.1 PicklePacket Data Structure Composition. 16

3.2 TaggedObject Data Structure Composition . 17

5.1 CORBA Results . 36

5.2 PDLS Results . 36

www.manaraa.com

1. INTRODUCTION

The government, business, and scientific communities are becoming increasingly

more dependent on middleware, which is defined as a set of distributed system services

which have standard programming interfaces and protocols and sit in a layer above

the OS and networking software and below applications.[2] The ability to harness the

power of software objects using a common Application Programming Interface (API)

to mask the complexity of the messaging is both convenient and increasingly neces-

sary for the implementation of large-scale complex systems. PDLS, or the Python

Distributed Logging System is an efficient method of interprocess communication

and communicating updates to the global state of a distributed system using up-

date log propagation. Events are disseminated throughout a middleware system in

response to an external or an internal stimulus. Whereas other systems such as the

Object Management Group’s (OMG) Common Object Request Broker Architecture

(CORBA)[11] have similar methods for propagating events throughout a system, it

has been shown to be less inefficient and less expedient than PDLS when used in a

large-scale environment.

1.1. MESSAGE-PASSING

Computer control structures can be interpreted as “patterns of passing messages”[4]

within the context of a distributed system. Message passing systems are also known

as “shared nothing systems”, in contrast to distributed systems which utilize shared

memory or state common to the processors to facilitate inter-process communication.

A message is defined as a collection of data objects, and the structure of a

message is defined by collaborating application processes. In a heterogeneous system,

data objects within a message are usually typed in order to facilitate conversion of

the contained data. Messages may also contain system-dependent control data, such

as message length, checksums, or flags, and will always contain a fixed or variable

length message body, which holds the system data objects. These messages are

composed and passed to a transport service, facilitating delivery of the messages

between disparate processes in the distributed system. Generally the transport service

www.manaraa.com

2

will provide send and receive primitives to alternately send a message (or a set of

messages) or to receive a message (or a set of messages). These transport service

primitives are well-defined and all of the communicating member processes of the

distributed system are contractually bound to abide by the semantics of the transport

service primitives. The communications primitives may be direct or indirect, buffered

or unbuffered, reliable or unreliable.[3]

1.2. MIDDLEWARE

In the context of a distributed system, middleware is defined as “the software

layer that lies between the operating system and the applications on each site of

the system.”[6] The fields of business and scientific research depend on middleware

to facilitate the communication of disparate nodes (also referred to as processes) on

a heterogeneous network, often without regard to processor architecture, network

connectivity, or network type. Examples of well-known middleware implementations

include CORBA by the OMG, the Distributed Computing Environment (DCE), and

Distributed Component Object Model (DCOM) by Microsoft, Inc. All of these have

gained widespread adoption and use and are well-known by developers and researchers

alike.

1.2.1. CORBA. The Common Object Request Broker Architecture (CORBA)

is a system of middleware which is defined by a group of specifications published by the

Object Management Group (OMG). The goal of CORBA is to provide a standardized

framework facilitating the interaction of disparate objects in a location-transparent,

hardware, network, and operating system agnostic fashion. It accomplishes this goal

by defining the interface via which the objects can communicate using the Interface

Description Language (IDL), a series of language-specific mappings for the data-

structures and services defined in the IDL. CORBA also uses a higher level abstrac-

tion of the message-passing protocols, known as the General Inter-ORB Protocol

(GIOP).[17]

The Internet Inter-ORB Protocol is the only mandatory protocol in the CORBA

suite. It is in fact defined as GIOP encapsulated by the TCP/IP protocol. However,

GIOP can be used with any message-passing protocol as long as the transport meets

a well-defined set of specifications[17] In order to be suitable for use by GIOP, it

www.manaraa.com

3

requires:

• The transport protocol must be connection-oriented.

• Reliable-delivery (byte-order preservation and delivery acknowledgment services

must be available) is assured.

• The participants must be notified in cases of connection loss.

• A connection must be initiated using a TCP-like initiation sequence.

GIOP defines a Common Data Representation, known as CDR which encodes all

of the datatypes defined in OMG IDL. The specification is endian-safe and alignment-

neutral, allowing messages to be decoded more easily by machines on heterogeneous

networks. The combination of IIOP and CDR allows all CORBA Object Request

Brokers (ORBs), no matter which vendor implements and supplies the middleware

layer, to interoperate and facilitate object communication.

At the heart of any CORBA-based system is the Object Request Broker (ORB).

The ORB provides the context in which an object is instantiated, brokers inter-object

messages, and resolves objects references at runtime. The ORB also handles inter-

ORB communication, using the the GIOP protocol described previously. An ORB

also manages the lifecycle of any CORBA object in its context. In the diagram below,

the “stub” and “skel” portions of the diagrams represent the automatically generated

code, which the CORBA tools create to glue an object or its proxy to the ORB.

www.manaraa.com

4

ORB A

Stub Skel

Obj A Obj B

ORB B

Stub Skel

Obj C Obj D

Intra-ORB msg

Inter-ORB msg

Figure 1.1. Intra-ORB and Inter-ORB Messaging

1.3. MIDDLEWARE AND MESSAGE-PASSING RELATIONSHIP

Middleware utilizes the primitives exposed in the message passing protocols

(such as TCP/IP) to encapsulate standardized messages which are then propagated

throughout a distributed system. For example, CORBA is able to utilize network

protocols such as TCP/IP, UDP, and IPX/SPX to propagate GIOP (General Inter-

ORB Protocol) messages between distributed CORBA ORBs.

Physical Network

Application Layer

Middleware

Message Passing (TCP/IP, IPX/SPX,
etc.)

Operating System

Application Layer

Middleware

Message Passing (TCP/IP, IPX/SPX,
etc.)

Operating System

Figure 1.2. Abstract Middleware and Message-passing on Two Distributed System
Nodes

www.manaraa.com

5

1.4. PYTHON

Python is an interpreted, object-oriented language and runtime. It was inspired

by the language ABC, a teaching language created in the early 1980s aimed at non-

professional developers. Python was meant to be a descendant of ABC that would

appeal to UNIX/C developers. [7]

The first implementation of Python was created on a Macintosh. However, as

the language grew in popularity, it was quickly ported to Linux, Solaris, FreeBSD,

Microsoft Windows, and eventually to Mac OS X. One of the motivations was to

make Python follow UNIX conventions and rely on the UNIX infrastructure, without

tightly binding the runtime to the UNIX platform.

One of the most controversial features of Python is its use of indentation to

denote functional blocks of code and scoping. Most languages use delimiters such

at parentheses and brackets to delimit scoping blocks, while Python’s interpreter

garners all of this information from the indentation of the line and following lines of

code. This is justified by the supposed readability benefit gained by the language

when whitespace is not only encouraged, but strictly enforced by the interpreter and

runtime. The design decision is justified by the theory that object reuse is more easily

facilitated by readable and easily understandable computer code, which is encouraged

by the use of whitespace in the Python language.

One of the other features of Python, which non-professional and beginning devel-

opers enjoy, the correct way of coding a logical construct is generally straightforward.

Unlike Perl and other language that pride themselves on having multiple ways of ac-

complishing equivalent logic, Python strives to have a single, obvious way to correctly

accomplish the task. This reduction in variability is alleged to increase the familiarity

of developers with a construct, making code easier to understand. This may also lead

to benefits in code maintenance, as most applications in research or in industry have

a lifetime that extends beyond the involvement of the original developers.

www.manaraa.com

6

As an interpreted language, Python trades execution speed for an increase in

programmer efficiency.[14] Over the course of the BOOTS[13, 12] system (a model

problem to study computer security) implementation and the BOOTS2 system im-

plementation, we found this to be true, as it was possible for one developer to achieve

in 3 years what had taken a team of graduate students nearly a decade of combined

effort.

1.4.1. Why Python?. Python was chosen as the implementation lan-

guage for the system we developed due its ease of development and lower cost of

maintenance[14]. The other system in use was the CCSP system[8], which was mod-

eled after Hoare’s Communicating Sequential Processes (CSP)[5]. CCSP was orig-

inally implemented using lex and yacc, which compiled out to an intermediate C

representation, which in-turn was compiled into an executable application. The lev-

els of indirection involved in the multiple-stage compilation made the coding of a

complex system such as the BOOTS simulation nearly unmaintainable.

1.4.2. Python Pickle Construct. The analogue to CORBA’s CDR is the

Python “pickle”. A pickle in Python is a serialized object graph, which preserves

not only the data of the serialized objects, but the relationships between the objects.

This is serialized into an endian-safe and alignment-neutral datastream, which is suit-

able for transmission between disparate nodes on heterogeneous networks. However,

Python’s pickle construct is specific to the Python runtime, and is unable to interop-

erate with applications developed in other programming languages or executing other

non-Python runtimes.

1.5. PYTHON DISTRIBUTED LOGGING SYSTEM (PDLS)

The Python Distributed Logging System is an implementation of an update

propagation system implemented in Python and C. The message-passing primitive

used is based on the ADA network rendezvous/select primitives. It was originally im-

plemented to serve the Security Group at the University of Missouri - Rolla. PDLS

attempts to retain the simplicity of Python, while providing the power of middleware.

This design decision was made to ensure that the application developer is not over-

burdened by the orthagonal concerns of state update, auxiliary communication, and

log maintenance.

www.manaraa.com

7

2. SURVEY

The following is a brief survey of middleware and message-passing systems, with

emphasis given to those more suited to fault-tolerant and secure distributed systems.

2.1. WEAKLY CONSISTENT MESSAGE PASSING TECHNIQUES

A message-passing system is considered to be “weakly-consistent” if the consis-

tency constraints on the replicated data are loose. Sites throughout the distributed

system may update or see the replicated data. The system need not support serial-

izablity and the “most-recent update” of the data is considered to be good enough.

One example of a system with requirements fitting a weakly-consistent system is the

Lotus Notes system, which is produced by IBM. In this system there is the require-

ment to propagate updates (in the form of postings) throughout the system. The only

constraint on these postings is that of causality, making it possible for the end-users

to follow the thread of conversations.[3]

2.1.1. Epidemic Techniques.

When dealing with communications in a distributed system, one cannot assume

the availability of a reliable communication channels and accept the idea of limited

communication. In such a system, one must be able to quickly and effectively spread

the news of an update without overwhelming the available communications infras-

tructure with messages. Thus, the epidemic algorithm is used to accomplish this

goal.

Given a data item d, a node may update the data, creating update u(d). As

soon as a node in the distributed system learns of an update, it should immediately

begin to attempt to propagate the update to the rest of the system. If the node

learns that u(d) is well-known during the course of propagating u(d), the node should

attempt to update the other nodes less vigorously than before. Given u(d), servers

are categorized as:

• Infectious - The server has knowledge of u(d) and is actively propagating it.

• Susceptible - The server does not know of u(d).

www.manaraa.com

8

• Removed - The server has knowledge of u(d) and is no longer vigorously prop-

agating it.

Given the previous categorizations, the algorithm follows naturally:

• 1. Infected server learns of u(d) and is categorized as infectious.

• 2. The infectious server contacts random servers and attempts to propagate

u(d).

• 3. If an infectious server contacts another infectious or removed server, it has a

1/k probability of being removed.

The algorithm progresses through multiple cycles, with the goal of the suscep-

tibility of each node rapidly converging to zero. At this point, u(d) is considered to

have propagated throughout the system. The epidemic algorithm is well-suited for

initial distribution of an update, but fails when attempting to infect the remaining

few susceptible nodes. Due to this well-known limitation of the algorithm, a backup

algorithm is often used.[3]

2.1.2. Anti-Entropy.

Anti-entropy is a simple form of an epidemic algorithm. The effect of the anti-

entropy algorithm can be either push, pull, or push-pull, depending on its design.[1]

www.manaraa.com

9

• Push - propagates all new updates to the remote node from the local node,

replacing remove value for update with timestamp less than those node to the

local node.

• Pull - retrieves all new updates from the remote node, replacing local values for

updates with timestamps superseding those known to the local node.

• Push-pull - combines the two operations above, involving both a local and

remote comparison of updates. Updates on the local and remote nodes are

bidirectionally compared, and those older updates on either node are superseded

by the newer ones using timestamp comparison.

Due to properties of the anti-entropy algorithm described in the Xerox PARC

report, pull or push-pull is preferable in conditions where few susceptible nodes re-

main, as a node’s susceptibility converges more rapidly to zero in the case of pull-push

and pull than in the purely push case.[1]

Anti-entropy can be a very expensive technique, especially in the case of the

push-pull algorithm, as two entire database comparisons are required to perform the

push-pull update.

2.1.3. Update Log.

The epidemic algorithms outlined earlier assume that when an update u(d) of

data item d is propagated to a node, that the value carried or implied by u(d) com-

pletely overwrites the value of d. However, this is not optimal in all cases, as some

data items are more correctly understood as a series of causally ordered updates (a

history) and an initial value. In this scenario, in order to properly understand the

value of u(d), it is imperative that the entire history is correctly propagated and

applied to the initial value of the data item. Epidemic algorithms they give only

probabilistic guarantees of the propagations of updates, and are therefore incompati-

ble the constraints governing a system based on the dissemination and application of

correct histories.

The update log propagation algorithm relies on each node keeping a log L of all

of the updates it has seen. L is composed of a partially ordered list of events. Each

event e is comprised of the following fields, which corresponds to an update:

www.manaraa.com

10

structure member description
e.method method and causally associated parameters
e.VTS associated vector timestamp
e.pid id of processor which executed the operation

Table 2.1. Casual Log Event Record Composition

The log exchange occurs between two communicating processors and implies

the constraint that the exchanged logs must be consistent. A log is considered to be

consistent if for an event e executed on processor p every processor j = 1 . . . M and

every event f :

f ∈ Lp[e]↔ f ∈ Lj[e]

An event’s context is represented by a vector timestamp, containing the per-

ceived values of clocks of the rest of the nodes in the system at the time of the

update. When exchanging logs, all of the events causally preceeding the current

event are passed along in the log.

In the interest of efficiency, matrix timestamps are used to garbage-collect event

logs. The matrix timestamp is maintained at each node and contains the perceived

values of the vector timestamps of the rest of the nodes. This is useful for two reasons.

First, if a node knows that an event has been propagated to all of the other nodes in

the system, the event can be safely removed from the log. Secondly, when propagating

the update log, the node must only send the events the recipient has not yet learned

of, creating another efficiency in the log propagation algorithm. Each row in the

matrix timestamp is an expression of the lower-bound of the event log in a remote

node or the local node. After each log propagation and exchange, this lower-bound is

updated, as the vector timestamps and node ids attached to the events received will

tell the integrating node the state of the remote node’s event log.

The log distribution protocol does not specify a method for determining which

processors will propagate their logs. It is perfectly acceptable to use anti-entropy or

www.manaraa.com

11

another epidemic algorithm to determine this. Also, distribution of the log and the

lower-bound vector timestamp are able to be separated. Matrix timestamp distribu-

tion can be expensive, as it is always M2 in size.

PDLS utilizes the update log propagation model, where the operations are the

serialized remote procedure calls and log exchanged is performed during the execution

of the network rendezvous or select primitive.

2.2. FTCORBA

Fault-Tolerant CORBA (FTCORBA) describes a set of services, an architecture,

and a set of mechanisms which are composed to form a framework for highly-available,

resilient, distributed systems. The applicability of FTCORBA runs from large scale

medical systems to small real-time embedded systems used in monitoring systems

and medical equipment. FTCORBA is invasive, in other words applications must

actively cooperate with the framework and be aware of its presence in order to reap

the benefits of FTCORBA.

FTCORBA encompasses three main features: entity redundancy, fault detection,

and fault recovery. However in this work, we will mainly concentrate on the mechanics

of the entity redundancy service, as this is where the services pertaining to object

and data replication are located.

Entity Redundancy is achieved via the replication of CORBA objects. An ob-

ject group is utilized to replicate the CORBA object, with each object within the

group implementing a common interface. In this respect, clients are unaware of the

replicated nature of the endpoint and use the replicated object as if it were a standard

CORBA object. FTCORBA designates the object group with an Interoperable Ob-

ject Group Reference (IOGR). The IOGR is maintained by FTCORBA throughout

the lifecycle of the replicated object and is used by the client to call services on the

replicated object.

FTCORBA defines three styles of replication: stateless, active, and passive.

These styles are differentiated by the points where an object groups’ member objects

reach a consistent state and the mechanisms used to create the consistent state.

Stateless replication styles carry all of the information required to complete

the invocation or a pointer to an external location where the pertinent state can be

www.manaraa.com

12

retrieved with the invocation. This style of replication is suited to objects that do

not persist state between invocations.

Active and passive replication are used when objects need to maintain some

state between invocations. In the case of passive replication, an object within the

object group is designated as the primary object and its state is periodically queried

and logged out to persistent storage. If and when a failure of the primary object is

detected, a backup object is promoted to primary status within the object group and

is brought up to date by reading the persisted log of the previous primary object.

In active replication, each object within the group processes the request, there-

fore maintaining a consistent state across all members of the object group. The client

receives only one response from the object group because the ORB filters duplicate

responses from the group.

One of the main weaknesses of the FTCORBA approach is its reliance on re-

liable communication between all members of the object group in order to allow for

coordination and state synchronization. FTCORBA does not address faults related

to network partitioning (unreachable nodes in the network), commission faults (in-

correct results from the execution of an invocation using a faulty or compromised

object), and correlated faults (i.e. application development logic errors).[9]

www.manaraa.com

13

3. TECHNIQUE

In order to test the performance of a Python-based update-log propagation so-

lution against the overhead and constraints of a CORBA-based solution, two systems

were constructed and applied to the model problems.

3.1. PYTHON DISTRIBUTED LOGGING SYSTEM

The Python-based update log propagation solution, known henceforth as the

Python Distributed Logging System (PDLS), grew out of the CCSP system [8]. It

utilizes the update log propagation algorithm to distribute global state and imple-

ments a subset of Ada-style network communication and synchronization primitives.

3.1.1. The Architecture of PDLS. PDLS is architected in a layered fashion,

where ideally each layer need not know of the layers above it and only depends on the

layers below it to operate. This design methodology proved to be useful for testing,

as each layer could be tested in independently from the layers that depended on it,

starting at the core of the application (the network layer), and moving up to the top

layer (the event layer).

PDLS has 3 main layers (referred to here as “services”). They are as follows:

www.manaraa.com

14

• NetworkService - Handles all of the network I/O of the application. Utilizes

BSD sockets for all network I/O tasks. All I/O in this layer is asynchronous

and is implemented using a thread-pool of worker threads which consumes a

queue of work items. When a work item is completed, the thread-pool notifies

the event subscribers of the completed I/O.

• RendezvousService - Provides support for the rendezvous and select primitives

(styled after Ada). Contains a dictionary of tags (which is a variable name plus

the label of the expected node). The RendezvousService receives notifications

from the NetworkService and utilizes it exclusively for all network I/O.

• EventService - Utilizes the RendezvousService to provide event logging services

to the application. The application notifies the EventService of any internal up-

dates and uses EventService provided primitives to wrap inter-node RPCs. The

EventService satisfies the RPC and handles the propagation and maintenance

of the event log.

www.manaraa.com

15

Application EventService RendezvousService NetworkService

sendEvent/recvEvent

rendezvous

sendObj

waitForAnyTag

OnSendObj

tObj

tObj

tObj

Figure 3.1. Sequence Diagram Showing a Typical Interaction between the Application
and the PDLS Service Layers

3.1.2. Message Passing. PDLS packages all of its messages in packets,

known as PicklePackets within the system. A PicklePacket utilizes the Python cPickle

module to provide all of the data-marshalling support and derives its name from the

module. PicklePackets are simple data structures that are constructed as shown in

the table below:

www.manaraa.com

16

Member Description Type
seqNum The sequence number of the packet integer
keepAliveConnection NetworkService should keep-alive connec-

tion
boolean

payload A packed-string representation of the
packet’s payload

string

Table 3.1. PicklePacket Data Structure Composition

The PicklePacket was designed to be a generic carrier of a packed-string repre-

sentation of a data item update in the system. The inclusion of the keepAliveCon-

nection flag was an implementation detail which was discovered to be necessary due

to the overhead associated with building up and tearing down a TCP connection for

each message passed in the system.

In the context of PDLS, the generic PicklePacket object generally carries a

TaggedObject as its payload. A TaggedObject is a simple structure containing a

Python object (type does not matter), a destination globally unique identifier (GUID),

and a source GUID, and a data tag. The GUIDs are also known as “process identi-

fiers” or “node labels” and should be considered equivalent within the context of the

PDLS system. The data tag is the name associated with the object update which

can be interpreted as an instance method, or simply an update to the global state.

The members of the TaggedObject structure are enumerated in the table below:

www.manaraa.com

17

Member Description Type
guid The destination GUID of the tagged ob-

ject.
string

srdGUID The source GUID of the tagged object. string
tag The data tag. string
containedObj The contained Python object. object instance

Table 3.2. TaggedObject Data Structure Composition

In the current implementation, the data-channel utilized by the message-passing

system is TCP/IP and the API used is the BSD sockets API. The NetworkService

has been successfully ported to Solaris, Win32, FreeBSD, Linux, and Mac OS X

(Darwin). The Network Service could be extended to any arbitrary protocol given

that it provided guaranteed delivery of data, as is the case with TCP/IP, and allowed

for point-to-point communications between the participating nodes.

3.1.3. Network I/O Implementation. Network I/O in the PDLS system

is based upon the NetworkService layer. The NetworkService layer uses a specialized

thread-pool implementation which provides cross-platform, operating system agnostic

support for asynchronous socket-base network I/O. A thread-pool is used in situa-

tions where one desires concurrency and multiple threads, but does not want to incur

the performance penalty of constantly setting up and tearing down operating system

threads. A Network Service takes a TaggedObject, embeds it in a PicklePacket as

the payload, and transmits it using TCP/IP to the peer node. The algorithm for

transmitting a packet follows below:

www.manaraa.com

18

Data: worker thread

Data: thread pool

Data: queue

Result: Assigning Work Items to Worker Threads in the Thread Pool

initialization

while not shutting down do
read work item from queue

if idle worker thread exists then
assign work item to worker thread

else
spawn new worker thread

add worker thread to thread pool

assign work item to worker thread

end

end

Algorithm 1: Network Thread Pool Work Item Assignment Logic

The Network Service also spawns another thread which is tasked with listen-

ing to the prescribed port and responding to remote connections. When a remote

connection is accepted, it is passed off to a worker thread, which spins in a select

loop, reading all available data until the connection is terminated. If the connection

experiences an error, or the last PicklePacket to be consumed from the remote node

specifies a value of false in the keepAliveConnection structure member, the connection

is terminated.

Clients of the NetworkService interact by first instantiating the NetworkSer-

vice and assigning it a TCP port and subscribes to the SEND, RECEIVE, and

ERROR events of the NetworkService with custom, client-supplied callback meth-

ods. Then the NetworkService enters the listening loop described above. After the

NetworkService has been properly initialized, clients utilize the sendObj primitive to

place work items on the queue and wait for their callback methods to be invoked

by the NetworkService. The sendObj primitive expects to receive a TaggedObject

as a parameter and immediately returns after it has scheduled the send. When a

PicklePacket is successfully decoded and the contained TaggedObject is extracted, a

RECEIVE event is detected by the middleware and all of the subscribers’ registered

www.manaraa.com

19

callback methods are invoked, passing the TaggedObject as the data parameter of

the method.

3.1.4. Name Resolution. Currently, the NetworkService is limited to a

fixed set of nodes, the cardinality or labeling of which is static during runtime. For

this purpose, there is a NameTable utility class which the NetworkService utilizes

for all endpoint description queries. The NetworkService passes the Globally Unique

Identifier (GUID) of the node it wishes to contact to the NameTable utility, which

looks it up in a static map and resolves it to the endpoint description (IP address, and

TCP port). This tuple is returned to the caller, or if the GUID is not found in the

map, the NameTable utility throws an exception. NameTable merging and update

facilities are available, and the intention is for future versions of the system to treat

the NameTable as another piece of the global state and utilize the EventService to

manage the update and propagation of the updates.

3.1.5. Network Rendezvous and Select. The network rendezvous and

select primitives were adapted from Ada and serve as PDLS’s primary method of data

exchange, as well as transparently performing the propagation and maintenance of

update logs (auxiliary communication). For example to perform a simple rendezvous,

Node A will create a TaggedObject with the tag “datatag1” and will enter the ren-

dezvous method of the NetworkService. The RendezvousService will check the locally

maintained data tag table, find that there is no tag corresponding to “datatag1”, and

suspend the thread. Node B, running on another processor or locally on a multi-

tasking operating system, will create a similar TaggedObject with the tag “datatag1”

and enter the Rendezvous service using the rendezvous method. At this point, the

NetworkService will check the data tag table, again locally maintained, and find a

tag corresponding to “datatag1”. The tags are previously agreed upon and prefixed

with the GUID representing the intended recipient node, thus guaranteeing unique-

ness throughout the system’s runtime. The object tagged with “datatag1” will be

immediately returned to the caller and the node will proceed. The object tagged with

“datatag1” will be similarly received by Node A, which will wake up, find the tag in

the data tag table, and return the object sent by Node B to the caller.

A client node will utilize the select primitive when it might possibly synchro-

nize with more than one remote node. This is useful in situations where there is

www.manaraa.com

20

one producer, and multiple possible consumers of the data (i.e. a web server). For

example, Node A will create a list of TaggedObjects and pass them to the selectObj

method of the NetworkService. The NetworkService will then attempt to perform a

rendezvous, based on any of the tags passed by the client. However, if it is unable

to perform a rendezvous, it will suspend the calling thread and wait for more tags

to be inserted into the tag table. There is no order or preference given to any of the

possible rendezvous tags. It is a non-deterministic, winner-take-all synchronization.

One remote node will be selected from a pool of possible rendezvous partners, and

the rest are forced to continue waiting. This has the potential of unfairly favoring

a more persistent client, but this was ameliorated by randomizing the order of the

list of TaggedObjects passed to the selectObjs method of the NetworkService. Un-

fortunately, this still leaves PDLS vulnerable to the issue of process starvation in the

scheduler.

3.2. EVENT PROPAGATION USING CORBA ORB INTERCEPTORS

WITH TAO

CORBA, as the specification currently stands, lacks a facility or a service (i.e.

the COSEventService) for the update log propagation, lazy database implementation,

or the maintenance of weakly consistent updates to global state. However, in the

CORBA 3 standard, there is a “Portable Interceptor” standard, which is suited for the

implementation of such a facility. In order to implement a PDLS-equivalent update

log propagation facility in CORBA, we implemented a set of client and server request

interceptors and tested them against the model problems using the TAO CORBA

ORB. While the interceptors provided a way to use “out of band” communications,

piggybacking on the IIOP communication stream, there was still the problem of a lack

of a suitable event-propagation implementation in C/C++. To address this need, we

implemented a C/C++ compatible event log propagation library, known henceforth

as “libLazyDB”.

3.2.1. libLazyDB Implementation and Design. libLazyDB is a simple

C++ library which implements the update log propagation algorithm. It is imple-

mented using the C++ Standard Template Library and is portable to any POSIX-

compliant platform. The interceptor library contains utilities for marshalling and

www.manaraa.com

21

unmarshalling the data to and from event logs into the CORBA CDR representation.

3.2.2. Interceptor Implementation and Design. One of the interesting,

and much-touted parts of CORBA is that a client cannot tell by either the object

reference or the form of the invocation whether an invocation’s target object is local or

remote. This is by design, and provides the location-transparency that the designers

of CORBA wished to achieve. However, in the case of update propagation, this creates

a problem for the implementor of the algorithm, as without non-portable addons to

the CORBA specifications, it is impossible to discern during the request phase of

a CORBA RPC which endpoint will service the RPC. Therefore, when making a

request, the sending node must bundle and send all of the possible update logs (one

per node in the system), instead of sending only the pertinent update log.

Input: q such that q is the destination node
Output: LL’ such that LL’ is a set of propagated logs

initialize LL’ to ∅
for j = 1 . . .M do

initialize L′
j to ∅

foreach e ∈ L such that min TS[q][e.p] < e.TS[e.p] do
append e to L′

j

end
append L′

j to LL’

end
send LL’ to q
send min TS to q

Algorithm 2: sendLog(q)

The CORBA Portable Interceptor standard defines two standard interfaces

“ClientRequestInterceptor” and “ServerRequestInterceptor”.[10] In the interceptor,

the following interception points were used to weave the update log propagation sys-

tem into the system:

www.manaraa.com

22

Client or Server Method Details
Client send request Queries request information and

modifies request service context.
Client receive reply Queries reply information after

server has completed call.
Server receive request Queries request information and

modifies reply service context.
Server send reply Queries reply information after tar-

get operation excution and before
reply is sent to client. Modifies re-
ply service context.

On the client side, we implemented an client interceptor send request method

that uses the modified sendLog algorithm listed above and creates propagation logs

for all possible communication partners. After the propagation logs are created, they

are serialized, along with the min TS matrix timestamp into the request context.

The server side interceptor implements the receive reply method and unmarshalls the

logs, throws away the logs which do not correspond to its node id, and utilizes the

receiveReply algorithm to incorporate the updates into its event log. It also places

a context hint into the ORB-supplied reply context identifying the client node, so

that the more optimal sendLog algorithm can be utilized on during the reply. After

the operation has been invoked, the send reply method reads the context hint out

of the ORB-supplied reply context (which is the serialized id of the client node) and

builds an event propagation log using the standard algorithm and serializes this along

with the server’s min TS matrix timestamp into the reply context. The client side

interceptor receive reply method retrieves the min TS and the update propagation

log from the reply context and uses the receiveReply algorithm to incorporated the

updates into its event log.

3.3. PROFILING THE SYSTEMS

One of the most difficult challenges facing us during the course of this experiment

was obtaining consistent profiling results from the application without materially

affecting the runtime of the system, as the PDLS system was found to be highly

www.manaraa.com

23

latency-sensitive. In preliminary tests, it was noticed that a network condition was

causing an increase in the latency associated with sending small messages. Due to the

synchronization feature of the network rendezvous, any small additions in latency can

aggregate and cause large delays at the system level. Therefore, a low-overhead call

counting and profiling library, inspired by the Solaris-based DTrace system[18], was

developed. This library, called Simpletrace in the implementation of the system, was

designed to impose a minimum amount of overhead on the system under observation.

In order to ensure a constant of amount of overhead, the Simpletrace was developed

in C/C++ and a Python module wrapper was created for it. This ensured that

the same amount of overhead was imposed on each system, allowing us to directly

compare runtime results.

As mentioned before, the Simpletrace library measures only call counts and total

call times. In the interest of achieving a low-overhead, minimum footprint profiling

toolkit, stack traces are not obtained during the profiling calls. This limitation limits

the applicability of the Simpletrace library to cases where there is a priori knowl-

edge of the call-tree and logic flow. When a method is entered, the logMethodEnter

function is called passing the name of the class and the method called as a static

string of the format “ClassName.methodName”. On method exit, the logMethodExit

function is called, again passing the name of the class and the method called as a

static string formatted “ClassName.methodName”. When a function is entered, the

logMethodEnter function is called passing the function called as a static string of the

format “functionName”. On method exit, the logMethodExit function is called, again

passing the name of the class and the method called as a static string formatted

“functionName”.

When the application has finished executing, the Simpletrace library compiles

statistics for each method and function which it encountered during the running of the

system. The call count, total time, and average time for each method and function

are printed to standard error for each thread. All results are comma-separated value

formatted, for easy importation into Microsoft Excel. This was found to greatly

reduce the amount of time required to analyze the results.

www.manaraa.com

24

4. MODEL PROBLEMS

To study the performance of the of the PDLS system and the TAO-based

Portable Interceptors, we implemented two model problems. The first model problem

is the classic Bounded-Buffer Problem, which was optimal for testing the system with

a lower-number of nodes, and could be completely contained on one host. The sec-

ond model problem is the BOOTS case study[13, 12], as implemented by the CCSP

system[8, 16]. However in the system implemented for the model problem, there is

no notion of history sanitization[16], as this is not relevant or necessary to profile the

system. The BOOTS system, as implemented in the CCSP system, is an excellent

example of a loosely-connected, large node set distributed system. In the model prob-

lems that follow, each node is a separate processor, communicating with other nodes

via CORBA or PDLS.

4.1. BOUNDED-BUFFER PROBLEM

The Simple Bounded-Buffer Problem is a well-known problem in the field of

Computer Science. There are three nodes in the system, a Producer, a Consumer,

and a Buffer. The Producer node produces items, which are transmitted to the Buffer

in a “GIVE” operation. The Consumer Node requests items from the Buffer using the

“TAKE” operation. The Buffer takes items transmitted by the Producer and stores

them in a bounded FIFO queue of items. For the purposes of the later experiments,

one may assume that the bound placed on the queue is that it make contain no more

than ten items and no less than zero. When the Buffer detects that the queue is full,

it stops servicing “GIVE” requests and only communicates with the Consumer node.

Likewise, when the Buffer detects that no items are left in the queue to consume, it

stops servicing “TAKE” requests and communicates exclusively with the Producer

node. When the queue is not either full or empty, the Buffer node will service requests

from either the Producer or the Consumer.

www.manaraa.com

25

PRODUCER BUFFER CONSUMER

queue

Figure 4.1. Bounded Buffer Problem

4.2. BOOTS2 SYSTEM

The Boots System simulates the movement of footwear orders through an or-

dering and distribution system. Orders can be labeled with differing security levels

and certain security constraints are followed which makes the system interesting due

to the complexity and volume of the message traffic.[16] An order consists of a desti-

nation for the shipment, a quantity of boots to be moved, and the purpose for moving

the boots. Orders have sensitivity levels of either high or low.

The BOOTS System has the following classifications of node:

• HeadQuarters (HQ) - The node where the orders originate.

• Stock-cell (SH,SL) - The nodes which decide the type of boots required based

on the the order’s purpose. The nodes also decide a source for the boots. Orders

with high security classifications are routed to the SH node and orders with a

low security classification are routed to the SL node.

• Stock-records (SR) - Coordinates with SH or SL to decide the source of the

boots which will fulfill the order.

• Security Officer (SO) - If an order is over-classified, the HQ node will send it

to the SO node, where it will be regraded and set to the SL node. The SO

node also inspects senders and receivers of audited messages in the Auditing

subsystem.

www.manaraa.com

26

• Movement (MV) - The MV node is messaged by either SL or SH with the num-

ber, source, and destination of the boots in the order. The node calculates the

number of trucks necessary for the shipment of the boots, and propagates this

information, along with the source and destination attributes of the shipment,

to the Transport node.

• Transport (TRP) - The TRP node is messaged by the MV cell with the source

and destination of a boots order, along with a number of trucks needed to move

a quantity of boots. The TRP node checks with the Transport Records node

to decide which trucks to utilize in order to fulfill the boots order.

• Transport Records (TRR) - The TRR node is queried by the TRR node when

it is deciding which trucks to utilize in order to fulfill the boots order.

• Auditor Buffer (ABF) - Buffers auditing messages from the rest of the system

to the Auditor node.

• Auditor (AUD) - Audits security messages held by the ABF node.

• Operator (OP) - Participates in the the archiving of an audit trail.

• Archive (ARH) - The ARH node receives security messages from the AUD node

and archives them.

www.manaraa.com

27

HQ

SH

SL

SO

1a
 [S

H]
: O

RD
ER

(o
p,

 q
ty,

 d
st,

 lv
l)

1b [SL]: ORDER(op, qty, dst, lvl)

1c [SO]: ORDER(op, qty, dst, lvl)

1c.1: REGRADE

1c
.2:

 O
RDER

(o
p,

 qt
y,

ds
t, l

vl)

SR

1a
.1

: Q
UE

RY
(b

oo
tsT

yp
, q

ty)

1a
.1

.1
: R

ET
UR

N(
wr

hG
UI

D)

1b.1: ORDER(op, qty, dst, lvl)

1b.1.1: RETURN(wrhGUID)

W0 W1 W2
2a [W

0]: O
R

D
ER

(type, qty)
2b

 [W
1]

: O
R

D
ER

(ty
pe

, q
ty

)

2c
 [W

2]:
 O

RDER(ty
pe

, q
ty)

2a
 [W

0]
: O

R
D

ER
(ty

pe
, q

ty
)

2b [W
1]: O

R
D

ER
(type, qty)

2c [W
2]: ORDER(type, qty)

MV

3: ORDER(wrhGUID, qty, dst)

3: ORDER(wrhGUID, qty, dst)

TRP

TRR

4:
 O

R
D

E
R

(w
rh

G
U

ID
, q

ty
, d

st
)

5:
 O

R
D

E
R

(w
rh

G
U

ID
, q

ty
, d

st
)

R
U

N
()

This collaboration diagram shows how the BOOTS system initiates and processes orders, without showing the interactions between the OP, AUD, ARH, and ABF processes.

Figure 4.2. UML Collaboration Diagram Showing the Processing of An Order within
the BOOTS2 System

www.manaraa.com

28

HQ

SH

SL

SO

SR

W0

W1

W2

MV

TRP

TRR

ABF

AUDIT(message)AUDIT(message)

AUDIT(message)

AUDIT(message)

AUDIT(message)

AUDIT(message)

AUDIT(message)

AUDIT(message)

AUDIT(message)

A
U

D
IT

(m
es

sa
ge

)

AUDIT(message)

AUD

1:
 M

O
R

E
()

1.
1:

 R
ET

U
R

N
(m

es
sa

ge
)

ARH

3: TRACE(message)

OP

2:
 R

E
A

D
Y

()
2.

1:
 M

O
U

N
TE

D
()

4:
 D

O
N

E
()

5: R
E

A
D

Y
()

6: TR
A

C
E

(m
essage)

This Diagram show how the Boots system interacts with the Auditor Buffer (ABF) object and the interaction of the ABF, AUD, OP, and SO objects.

Figure 4.3. UML Collaboration Diagram Showing the Interaction of the BOOTS2
Nodes with the Auditor, Auditor Buffer, Operator, and Security Officer
Processes

www.manaraa.com

29

5. RESULTS

Four distributed systems were created to test the PDLS and CORBA middle-

ware frameworks. First, we created a CORBA-based version of the Bounded Buffer

problem and a PDLS-based version of the Bounded Buffer problem. In order to see

the overhead of each system, the runtime of each system was modeled by running

it for 10000 iterations and changing the message size for each test, starting with a

message size of 256 bytes. In each test, the message size was equal to the message

size of the previous test multiplied by two. Using the Simpletrace library, we si-

multaneously profiled the overhead of each part of the system, grouping the various

time components into either the “Transport”, “Middleware”, or “Application” time

categories. The “Transport” category was assigned the network I/O time. w/o any

wait time (time typically spent in a select loop) The “Middleware” time category was

assigned the wait time, event propagation and incorporation time, marshalling and

unmarshalling time, and any other overhead assigned to the middlware in test. The

“Application” category receives the balance of the time unassigned to the “Transport”

or “Middleware” categories. Using this profiling data, we were able to determine the

overhead imposed by the middleware under test. For the Bounded-Buffer problem,

we also tracked the number of bytes sent and received by each node in the system.

Using this data, we created a graph and used linear regression to model the runtime

of the system using a version of the linear model of point to point communication. As

the message payload size of the BOOTS system was driven by each individual node,

this modelling was not performed for the large-scale BOOTS system test.

5.1. LINEAR MODEL OF POINT-TO-POINT COMMUNICATION

The linear model of point-to-point communication is used to model the commu-

nications between two nodes of a distributed system. The parameters are as follows:

www.manaraa.com

30

• t - total time

• ts - startup time

• tb - time needed to send one byte of data in the message

• n - number of bytes

t = ts + tb ∗ n (1)

In our experiments, we used the total runtime of the system as our t value, we

tracked the total number of bytes sent in the system and used this for our n value,

and used linear regression to solve for ts and tb, using our set of results garnered from

the test runs. Again, each test used a different message payload size, starting from

256 bytes, and doubling with each test run until a message payload size of 8192 bytes

was reached.

www.manaraa.com

31

5.2. BOUNDED BUFFER

Runtime vs. Message Size

y = 0.0024x + 196

R2 = 0.9935

y = 0.0032x + 27.598

R2 = 0.9911

0

100

200

300

400

500

600

700

800

900

0 50000 100000 150000 200000 250000 300000

Message Size

R
u

n
ti

m
e CORBA

PDLS

Linear (PDLS)

Linear (CORBA)

Figure 5.1. System Runtime vs. Message Size

This graph shows that the CORBA-based system outperforms the PDLS system

until the message size reaches 210, 502 bytes. The message size is dependent on the

number of the nodes in the system, payload size, marshalling efficiency, and algorithm

used to create the history update. This is why the efficiency of the algorithm used in

the PDLS-based system is critical for overall system efficiency.

www.manaraa.com

32

Bytes Sent vs. Payload Size

y = 505499x + 2E+07

R2 = 0.9998

y = 79862x + 3E+07

R2 = 1

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

4500000000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Payload Size (in bytes)

B
y
te

s
S

e
n

t

CORBA

PDLS

Linear (CORBA)

Linear (PDLS)

Figure 5.2. Total Traffic (Bytes Sent) vs. Payload Size

The inefficiency of the CORBA-based solution is also shown here, with the

increase in the total traffic (in bytes) increasing at a rate which is approximately

6x that of PDLS. The relative inefficiency of IIOP vs. the pickle packet may also

contribute to this result.

www.manaraa.com

33

Runtime vs. Payload Size

y = 0.0802x + 31.133

R2 = 0.9918

y = 0.004x + 201.75

R2 = 0.9938

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Payload Size (bytes)

T
im

e
 (

se
c) CORBA

PDLS

Linear (CORBA)

Linear (PDLS)

Figure 5.3. System Runtime vs. Payload Size

This graph again highlights inefficiency in the CORBA system. The intersection

point of the trendlines in this graph occurs at message payload size 2239 bytes.

www.manaraa.com

34

Overhead as a % of Total Runtime

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PR
ODUC

ER
-2

56

BU
FF

ER
-2

56

CO
NSU

MER
-2

56

PR
ODUC

ER
-5

12

BU
FF

ER
-5

12

CO
NSU

MER
-5

12

PR
ODUC

ER
-1

02
4

BU
FF

ER
-1

02
4

CO
NSU

MER
-1

02
4

PR
ODUC

ER
-2

04
8

BU
FF

ER
-2

04
8

CO
NSU

MER
-2

04
8

PR
ODUC

ER
-4

09
6

BU
FF

ER
-4

09
6

CO
NSU

MER
-4

09
6

PR
ODUC

ER
-8

19
2

BU
FF

ER
-8

19
2

CO
NSU

MER
-8

19
2

Process-Msg Size (in bytes)

R
u

n
ti

m
e
 % Transport Time

Application Time
Middleware Time

Figure 5.4. Overhead Imposed by the CORBA Middleware on the Bounded Buffer
Problem

www.manaraa.com

35

Overhead as a % of Total Runtime

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PR
ODUC

ER
-2

56

BU
FF

ER
-2

56

CO
NSU

MER
-2

56

PR
ODUC

ER
-5

12

BU
FF

ER
-5

12

CO
NSU

MER
-5

12

PR
ODUC

ER
-1

02
4

BU
FF

ER
-1

02
4

CO
NSU

MER
-1

02
4

PR
ODUC

ER
-2

04
8

BU
FF

ER
-2

04
8

CO
NSU

MER
-2

04
8

PR
ODUC

ER
-4

09
6

BU
FF

ER
-4

09
6

CO
NSU

MER
-4

09
6

PR
ODUC

ER
-8

19
2

BU
FF

ER
-8

19
2

CO
NSU

MER
-8

19
2

Process-Msg Size (in bytes)

R
u

n
ti

m
e
 % Transport Time

Application Time
Middleware Time

Figure 5.5. Overhead Imposed by the PDLS Middleware on the Bounded Buffer Prob-
lem

The previous two graphs show that the PDLS solution imposes much less over-

head (5-10% less) than the CORBA-based solution for the PRODUCER and CON-

SUMER nodes. Since wait time is charged to the Middleware Time category, the

effect is much more pronounced in the BUFFER node, which spends less of its time

waiting for messages, as the PRODUCER node must wait for the BUFFER while

it is communicating with the CONSUMER node and vice-versa. In the case of the

BUFFER node, the difference in overhead is approximately 25%-30%.

www.manaraa.com

36

5.3. BOOTS SYSTEM

TRR MV HQ
time (µs) time % time (µs) time % time (µs) time %

Application 122187 0.025% 359422 0.072% 4952360 1.002%
Transport 1804083 0.363% 21831720 4.395% 1764340 0.357%

Middleware 21494262 99.612% 116074679 95.532% 487720371 98.642%

Table 5.1. CORBA Results

TRR MV HQ
time (µs) time % time (µs) time % time (µs) time %

Application 449472 0.16% 902571 0.31% 702387 0.24%
Transport 7195336 2.49% 15092049 5.17% 10180044 3.50%

Middleware 281393175 97.36% 275966245 94.52% 280339237 96.26%

Table 5.2. PDLS Results

The tables above show the results of the BOOTS system implementation using

both the CORBA and PDLS frameworks. As expected, the system runtime and over-

head of the PDLS system is much lower than the overhead of the CORBA framework,

due to the higher overhead of the update log propagation implementation. This effect

was also seen in the small-scale (Bounded Buffer Problem) tests. The BOOTS system

has 15 nodes, but for this test, the Auditing subsystem (ARH, OP, ABF, and AUD)

was disabled due to performance issues in the scheduling component of the PDLS

www.manaraa.com

37

system. A representative subset of the remaining nodes (HQ, TRR, and MV) were

selected and profiled, giving the results seen above.

5.4. ISSUES FACED DURING IMPLEMENTATION

5.4.1. Latency Sensitivity. During the implementation of the PDLS sys-

tem, we noticed that with very small message payload sizes (less than 2048 bytes), the

“Middleware Time” category spiked and the overall runtime of the system was ad-

versely affected. This observed behavior was due to the synchronization aspect of the

underlying rendezvous primitive, which waits for the completion of the bidirectional

data transfer. The operating system was attempting to coalesce small messages into

larger messages in the network buffers, which in turn was adding a delay to each data

transfer and increasing the latency of the rendezvous. These delays were accumulat-

ing to the point where the overall system performance was negatively impacted. After

much profiling, debugging, and research, it was noticed that the CORBA-based sys-

tem disabled “Nagle’s Algorithm”[17] for small messages, alleviating this problem by

disabling the message coalescing behavior. When Nagle’s Algorithm was disabled in

the PDLS system, the transmission time of small messages in the Transport Category

greatly decreased and the overall system runtime was significantly reduced.

5.4.2. Pervasive Concurrency - Race Conditions. The development of

the PDLS system was fraught with peril. Threading, while useful, opened up many

conditions where races, deadlocks, and subtle logic bugs created multi-day debugging

scenarios and difficult to replicate failure situations. This greatly complicated the

debugging and lengthened the development time of the PDLS system.

5.4.3. Python Interpreter Concurrency. Another issue encountered in

development due to a known issue in the Python Interpreter and was exacerbated

when the PDLS system was used on multiple-processor hosts. The issue centers

around the need for the Python interpreter to preserve state which is common across

all threads. Locking the entire interpreter makes it impossible for concurrent process-

ing to occur within one context space. This lock is known as the Global Interpreter

Lock, or the GIL and is released on I/O and at a set interval set in the “sys” module

as the “syscheckinterval”. In the PDLS interpreter, it was found that manipulat-

ing this value had little to no effect on the overhead imposed by the Middleware or

www.manaraa.com

38

Transport layers. However, by creating a C module for the TagDict module utilized

by the RendezvousService module, which allowed a thread waiting on a key to give

up the GIL, it was theorized that the concurrency level of the system could be greatly

increased and the performance improved on multiple core systems. However, those

theories were not tested and the tests are reserved for future work.

www.manaraa.com

39

6. CONCLUSIONS

We created a lightweight middleware that utilized the power of a dynamic lan-

guage to make the implementation of secure and fault-tolerant applications more

straightforward and less involved, without sacrificing an undue amount of perfor-

mance and concurrency. The largest disappointment encountered was the due to the

runtime’s lack of concurrency (i.e. the GIL), which limits performance on hosts with

multiple processors or processor cores.

In comparison to a similar solution implemented using CORBA, PDLS is the

clear winner, due to one of the design decisions made early on in CORBA which

limits the transparency and visibility of the node which will service another node’s

request. The TAO technology addition (available in the Beta version of TAO but not

in the Generally Available release at the time of writing) which will allow interceptors

to know more about the endpoint (IP address and TCP port), should allow a future

researcher to ameliorate this issue and bring the efficiency of a CORBA-based solution

into line with a PDLS one. Unfortunately, for now, this limitation severely limits the

scalability of a CORBA-solution, due to the need to create an update log for each

possible node in the system for at least request part of the RPC.

A look at the code listing in Appendix A for the Bounded Buffer problem

will highlight the simplicity of the PDLS solution vs. the CORBA solution. The

PDLS-framework is ideal for the implementation of fault-tolerant and security appli-

cations without having to distract the implementor with marshalling (type), memory-

managment, or language (IDL) concerns.

www.manaraa.com

40

7. FUTURE WORK

The PDLS system is relatively new, and as such could use improvements in

the protocol used for message passing and in the framework itself. In the following

subsections, we examine and suggest areas for improvement, as well as suggesting

some applications for the middleware.

7.1. PROTOCOL IMPROVEMENTS

The PicklePacket described in the previous sections is an all purpose solution

for serializing an object graph to a bytestream. While this generic system works very

well and appears to perform well, it is possible that a more optimal solution, one

which does not sacrifice the design goal of protecting the application developer from

the nuances of marshalling and unmarshalling data, might exist and be superior to

the generic system of pickling Python object graphs. An efficiency comparison, in

which a known data structure and was marshalled, unmarshalled, and profiled might

be advantageous.

7.2. FRAMEWORK IMPROVEMENTS

The auditing subsystem of the BOOTS was disabled in the above experiment

due to poor performance seen in the ABF process, which was processing events from

a large number of nodes in the system. The poor performance was attributed to

the lack of intelligent scheduling in the RendezvousService component of the PDLS

system, as it merely randomizes the list of tags it waits for and takes the first available

tag, allowing a persistent process to monopolize the conversation, starving the other

processes. A “pluggable” system of schedulers for the RendezvousService would be

advantageous, as it would allow the application implementor to select the scheduler

best suited to the solution’s requirements.

The PDLS system is perfectly suited to a static set of nodes, where nodes do not

enter or leave the system during a long running distributed system. Unfortunately,

in reality, this is very rarely the case. The applicability of PDLS is limited due to

the inability of the middleware to dynamically add and remove nodes at runtime.

www.manaraa.com

41

The addition of this functionality would allow the middleware to be used in mobile

applications and in Peer-to-Peer file sharing and indexing applications.

7.3. APPLICATIONS

The PDLS system would be ideal for creating applications to facilitate research

into security system, such as intrusion detection research using immune system in-

spired detectors on systems such as the BOOTS system.[15] The PDLS middleware

framework supports logging of all update logs, and these update logs (or “traces”)

can be used as input data for these security systems.

We suggest that PDLS would be ideal for certain fault-tolerant applications,

as a connected graph of nodes is not necessary to propagate updates to the global

state throughout the system. This makes the system robust with respect to lost

connections, corrupted data, compromised systems, and non-responsive nodes.

www.manaraa.com

APPENDIX A

BUFFER Implementation

www.manaraa.com

43

This appendix shows the source code of the BUFFER implementation utilizing

the PDLS and CORBA middleware frameworks. In the case of PDLS you see the

entire application, with the addition of the PDLS framework, it is self-contained and

ready to run. In the case of the CORBA-based BUFFER implementation, I show only

the C++ class implementing the BUFFER functionality, as the driver (“main.cpp”)

is mostly TAO CORBA C++ boilerplate code.

Listing 1. PDLS Implementation of BUFFER Node

from PDLS import *

from PDLS.TaggedObject import TaggedObject

from PDLSPids import *

from PDLS.Loggers import TextLogger

from tracesupport import traceit_method , traceit_func

import time , sys , os

PIDS

0 - Buffer

1 - Consumer

2 - Producer

Main function

numItems = 10000

stdMsg = ’’.join([’X’ for i in range(int(sys.argv [1]))])

@traceit_func

def bufferKernel(es):

Setup the bounded buffer

bBuffer = []

numProduced = 0

numConsumed = 0

for i in range (numItems * 2):

www.manaraa.com

44

If we have room , accept a rendezvous from either the

producer or the consumer

if ((len(bBuffer) > 0) and (len(bBuffer) < 10)):

tObjGive = TaggedObject(guid = pidProducer ,

tag = ’GIVE’, containedObj = stdMsg)

tObjTake = TaggedObject(guid = pidConsumer ,

tag = ’TAKE’, containedObj = bBuffer [0])

Do the guarded recv

rObj = es.selectEvents([tObjGive ,tObjTake])

tag = rObj.getTag ()

if (tag == ’GIVE’):

We rendezvous ’d with the producer

bBuffer.append(rObj.getObject ())

numProduced += 1

elif (tag == ’TAKE’):

We rendezvous ’d with the consumer

bBuffer.pop (0)

numConsumed += 1

else:

raise RuntimeError , "Bad TAG %s" % tag

elif (len(bBuffer) == 0):

Only rendezvous with the producer

tObj = TaggedObject(guid = pidProducer ,

tag = ’GIVE’)

rObj = es.recvEvent(tObj)

bBuffer.append(rObj.getObject ())

numProduced += 1

elif (len(bBuffer) == 10):

Only rendezvous with the consumer

tObj = TaggedObject(guid = pidConsumer ,

tag = ’TAKE’, containedObj = bBuffer.pop (0))

rObj = es.sendEvent(tObj)

numConsumed += 1

www.manaraa.com

45

i+=1

def mainLoop(es):

time.sleep (10)

bufferKernel(es)

print "bufferKernel exited."

time.sleep (10)

es.shutdown ()

def main ():

nameTable = NameTable.deserializeFromFile(

os.path.expanduser(’~/ research/nametables/bbuffer.xml’))

es = EventService.EventService(pidBuffer , 3, None ,

nameTable , 1, TextLogger(’/tmp/PDLSBuffer.elog’),

True , 2, mainLoopFunc=mainLoop ,

seqNumStart=pidBuffer * 1000000)

es.listen ()

###

if __name__ == ’__main__ ’:

main()

Listing 2. CORBA Implementation of BUFFER Node - IDL

module BBUF

{

interface BUFFER

{

void GIVE(in string item);

string TAKE();

};

www.manaraa.com

46

};

Listing 3. CORBA Implementation of BUFFER Node - C++ Class Header

#include "BUFFERS.h"

#include "LazyDB.h"

class BUFFER_i : public POA_BBUF :: BUFFER

{

public:

BUFFER_i(const std:: string& _stdMsg);

~BUFFER_i ();

void orb (CORBA:: ORB_ptr o);

// Set the ORB pointer.

void poa (PortableServer :: POA_ptr poa);

// Set the POA pointer.

void set_orb_manager (TAO_ORB_Manager *orb_manager);

// Set the ORB Manager.

TAO_ORB_Manager *orb_manager_;

// The ORB manager.

virtual void GIVE (

const char * item

)

ACE_THROW_SPEC ((

::CORBA :: SystemException

));

virtual char * TAKE ()

ACE_THROW_SPEC ((

www.manaraa.com

47

::CORBA :: SystemException

));

void orbShutdownCheck ();

private:

CORBA :: ORB_var orb_;

// ORB pointer.

PortableServer :: POA_ptr poa_;

// POA pointer.

ACE_Thread_Mutex listMutex;

ACE_Semaphore itemsAvailSemaphore;

ACE_Semaphore spaceAvailSemaphore;

ACE_Atomic_Op <ACE_Thread_Mutex ,int > numEvents;

std::list <char *> stringBuffer;

std:: string stdMsg;

ACE_UNIMPLEMENTED_FUNC (void operator= (const BUFFER_i &))

};

Listing 4. CORBA Implementation of BUFFER Node - C++ Class Implementation

#include "StdAfx.h"

#include "BUFFER_i.h"

#include "BBUFPids.h"

#include "EventLibTypes.h"

#include "Simpletrace.h"

#include "CORBAOBJ_factory.h"

#define MAX_BUFFER_SIZE 10

www.manaraa.com

48

#define NUM_MSGS 10000 * 2

BUFFER_i :: BUFFER_i(const std:: string& _stdMsg) :

itemsAvailSemaphore (0),

spaceAvailSemaphore(MAX_BUFFER_SIZE),

stdMsg(_stdMsg), numEvents (0)

{

// no -op

}

BUFFER_i ::~ BUFFER_i ()

{

// no -op

}

void

BUFFER_i ::orb (CORBA :: ORB_ptr o)

{

this ->orb_ = CORBA::ORB:: _duplicate (o);

}

void

BUFFER_i ::poa (PortableServer :: POA_ptr poa)

{

this ->poa_ = poa;

}

void

BUFFER_i :: set_orb_manager (TAO_ORB_Manager *orb_manager)

{

this ->orb_manager_ = orb_manager;

}

void

www.manaraa.com

49

BUFFER_i ::GIVE(const char * item)

ACE_THROW_SPEC ((:: CORBA:: SystemException))

{

logMethodEnter("BUFFER_i.GIVE");

spaceAvailSemaphore.acquire ();

ACE_Guard <ACE_Thread_Mutex > guard(listMutex);

char *tmpString = new char[strlen(item) + 1];

strcpy(tmpString , item);

this ->stringBuffer.push_back(tmpString);

guard.release ();

itemsAvailSemaphore.release ();

eventLogSingleton ->lockForUpdate ();

eventLogSingleton ->

performUpdate(std:: string("(GIVE ,") +

stdMsg + std:: string(")"));

eventLogSingleton ->unlockForUpdate ();

numEvents ++;

orbShutdownCheck ();

logMethodExit("BUFFER_i.GIVE");

}

char *

BUFFER_i ::TAKE()

ACE_THROW_SPEC ((:: CORBA:: SystemException))

{

logMethodEnter("BUFFER_i.TAKE");

itemsAvailSemaphore.acquire ();

ACE_Guard <ACE_Thread_Mutex > guard(listMutex);

www.manaraa.com

50

char *tmpString = this ->stringBuffer.front ();

this ->stringBuffer.pop_front ();

guard.release ();

spaceAvailSemaphore.release ();

eventLogSingleton ->lockForUpdate ();

eventLogSingleton ->

performUpdate(std:: string("(TAKE ,") +

stdMsg + std:: string(")"));

eventLogSingleton ->unlockForUpdate ();

numEvents ++;

orbShutdownCheck ();

logMethodExit("BUFFER_i.TAKE");

return tmpString;

}

void

BUFFER_i :: orbShutdownCheck ()

{

logMethodEnter("BUFFER_i.orbShutdownCheck");

if (numEvents >= NUM_MSGS)

{

// Shutdown the orb , wait for all

// events to complete first.

std::cerr << "BUFFER is shutting down"

<< std::endl;

(* orbSingleton)->shutdown(true);

}

logMethodExit("BUFFER_i.orbShutdownCheck");

}

www.manaraa.com

APPENDIX B

PDLS User Manual

www.manaraa.com

52

This Appendix constitutes the PDLS User Manual. The PDLS messaging API

is exposed via the EventService class. Data is contained in an instance of the Tagge-

dObject class. The EventService requires a properly initialized NameTable to be

initialized with the GUIDs, TCP ports, and IP addresses of all of the other nodes in

the distributed system, as shown below in the example NameTable XML file.

B.1. USAGE EXAMPLE

The example below sets up a NameTable from a serialized xml file and starts the

EventService. When the EventService finishes initializing the listening thread, used

for the receiving of TaggedObjects from remote nodes, it call the mainLoop function,

which proceeds to demonstrate the use of the select, receive, and send primitives of

the PDLS middleware.

Listing 5. Example NameTable XML File

<?xml version=’1.0’ encoding=’UTF -8’ ?>

<nametable >

<!-- this entry tells the NameTable that

the node with GUID = ’0’

is running on the host ’blade3.cs.umr.edu’

at TCP port ’26788 ’ revision is currently out ,

but will act as a timestamp for

a future merge/update algorithm

-->

<entry ip=’blade3.cs.umr.edu’ guid=’0’ port=’26788’

revision=’0’ />

<!-- the following entries are in the same

form as the first entry

and define the rest of the nodes

in the NameTable

-->

<entry ip=’blade4.cs.umr.edu’ guid=’1’ port=’26789’

revision=’0’ />

www.manaraa.com

53

<entry ip=’blade5.cs.umr.edu’ guid=’2’ port=’26790’

revision=’0’ />

</nametable >

Listing 6. Example PDLS Python Script

from PDLS import *

from PDLS.TaggedObject import TaggedObject

from PDLSPids import *

from PDLS.Loggers import TextLogger

This function is called by the EventService ,

after it has completed setting up the

listening thread.

def mainLoop(es):

setup a pair of test objects for the select

tObjGive = TaggedObject(guid = pidProducer , tag = ’GIVE’,

containedObj = stdMsg)

tObjTake = TaggedObject(guid = pidConsumer , tag = ’TAKE’,

containedObj = ’some test obj’)

This shows a multiple -receive (a select)

rObj = es.selectEvents([tObjGive ,tObjTake])

tag = rObj.getTag ()

This shows a single -receive

We’ll wait until the remote node (GUID = 0)

contacts us with a Tagged object with the

tag ’GIVE’

tObj = TaggedObject(guid = 0, tag = ’GIVE’)

rObj = es.recvEvent(tObj)

rObj is the TaggedObject sent by the remote node and

exchanged during the rendezvous

www.manaraa.com

54

This shows a single -send

We’ll send this TaggedObject to the remote node (GUID = 2)

and wait for a reply.

tObj = TaggedObject(guid = 2, tag = ’TAKE’,

containedObj = ’some test payload ’)

rObj = es.sendEvent(tObj)

rObj is the TaggedObject returned by the remote node and

exchanged during the rendezvous

shutdown the event service , kill the listening thread

es.shutdown ()

def main ():

deserialize a previously created nametable from the xml

file at $HOME/research/nametables/testnametable.xml

this will allow us to resolve GUIDs to TCP ports and IP

addresses

nameTable = NameTable.deserializeFromFile(

os.path.expanduser(

’~/ research/nametables/testnametable.xml’

))

setup a TextLogger to log the events to

’/tmp/testnode.log’

logger = TextLogger(’/tmp/PDLSBuffer.elog’)

setup the EventService instance , the instance should

start the ’mainLoop ’ after it has properly

initialized the listening thread

es = EventService.EventService (1, # our node GUID

3, # total nodes

None , # TCP port to listen to (this is default , look

up in NameTable)

nameTable , # the previously initialized nametable

www.manaraa.com

55

1, # turn on history clipping (should always do this

unless you have a _good_ reason to disable this)

logger , # pass the text logger

True , # keep alive connections (should always do this

unless you have a _good_ reason to disable

this)

2, # expected number of nodes we’re communicating

with (optimization of thread pool)

mainLoopFunc=mainLoop # function to call after

we initialize the

listening thread

)

tell the EventService to start the listening thread ,

which will then start the mainLoop () function , passing

itself as the first parameter

es.listen ()

###

if __name__ == ’__main__ ’:

Execute the main() function

main()

www.manaraa.com

56

B.2. API REFERENCE

TaggedObject Class

init (self, guid, tag, containedObj =None)

Initialize a TaggedObject.

Parameters:

’guid’ - GUID of destination node

’tag’ - data tag associated with the ’TaggedObject’ instance

’containedObj’ - payload object

eq (self, other)

Test for equality between this instance and

another instance of a ’TaggedObject’

Parameters:

’other’ - instance of ’TaggedObject’ to test against for equality

Returns True if equal, False if not equal.

str (self)

Returns the string representation of the ’TaggedObject’.

getGUID(self)

Returns the GUID of the destination node.

www.manaraa.com

57

getObject(self)

Returns the payload object.

getSrcGUID(self)

Returns the GUID of the source node

getTag(self)

Returns the data tag.

setSrcGUID(self, srcGUID)

INTERNAL

Sets the GUID of the source node.

Parameters:

’srcGUID’ - GUID of the source node

Note:

Should only ever be called by the RendezvousService.

www.manaraa.com

58

EventService Class

init (self, pid, numPids, port=None, nameTable=None, clipping=1,

logger=None, keepAliveConnections=False, numExpectedPeers=5,

mainLoopFunc=None, seqNumStart=0)

Initialize an EventService object.

Parameters:

’pid’ -- pid of the process in the system

’numPids’ -- number of processes in the system

’port’ -- (optional) TCP/IP port number to listen on

’nameTable’ -- (optional) ’NameTable’ object to use in

this object

’clipping’ -- (optional) 1 if events should be clipped

from the history, 0

’logger’ -- (optional) logger to log events

’keepAliveConnections’ -- (optional) passed to NetworkService

’numExpectedPeers’ -- (optional) passed to NetworkService

’mainLoopFunc’ -- (optional) passed to NetworkService

’seqNumStart’ -- (optional) passed to NetworkService

if they should not

www.manaraa.com

59

buildPropLog(self, q, tempL)

INTERNAL

Build a log of events to propagate to pid ’q’.

Parameters:

’q’ -- pid of the process we are building an event

history propagation log for

’tempL’ -- the log used as the source log

Returns:

A propagation log to send to ’q’.

dumpLog(self)

Dump our log out to stdout.

getLogger(self)

Returns the logger for the ’EventService’

getRendezvousService(self)

Returns the embedded ’RendezvousService’ object associated

with this object.

Returns:

The ’RendezvousService’ object associated with this object.

www.manaraa.com

60

listen(self)

Begin listening for events.

receiveLog(self, p, Lprime, min TSprime)

INTERNAL

Merge ’Lprime’ (the propagated history from ’p’) with our

L (event history). Also, update our ’minTS’ members with the max

of ’minTS’ and ’min TSprime’.

Parameters:

’p’ -- pid of the process we received the propagated history from

’Lprime’ -- the propagated history from ’p’

’min TSprime’ -- minimum ’IntFixedVectorTS’ object from ’p’

www.manaraa.com

61

recvEvent(self, tObj, copyObjectFlag=0, timeout=0)

Rendezvous at tag with srcPid, passing our event history

for the object and our matrix timestamp.

Parameters:

’tObj’ -- TaggedObject to be exchanged with the sending

process.

’copyObjectFlag’ -- 0 if the object contained in tObj

should not be deep-copied

1 if the object contained in tObj

should be deep-copied

’timeout’ -- unused

Returns:

The ’TaggedObject’ sent from the sending process.

www.manaraa.com

62

selectEvents(self, tObjList, copyObjectsFlag=0, timeout=0)

Inspired by Ada’s select.

Implements a guarded recv with the pids and tags

specified in the tObjList.

Parameters:

’tObjList’ -- a list of TaggedObjects used for specifying the

pids, tags, and objects used in the redezvous

’copyObjectsFlag’ -- 0 if the objects contained in tObjList

should not be deep-copied

1 if the objects contained in tObjList

should be deep-copied

’timeout’ -- unused

Returns:

The ’TaggedObject’ sent from the sending process.

sendEvent(self, tObj, copyObjectFlag=0, timeout=0)

Rendezvous at tag with destPid, passing the tObj object

and the matrix timestamp.

Parameters:

’tObj’ -- ’TaggedObject’ which is to be sent

’copyObjectFlag’ -- 0 if the object contained in tObj

should not be deep-copied

1 if the object contained in tObj

should be deep-copied

’timeout’ -- unused

www.manaraa.com

63

setLogger(self, logger)

Sets the logger for the ’EventService’

shutdown(self)

Shuts down the internal ’NetworkService’ instance.

www.manaraa.com

64

NameTableEntry Class

init (self, guid=’’, ip=’*’, port=0, revision=0)

Initializes a ’NameTableEntry’ object.

Parameters:

’guid’ -- guid (string/int) representing a process

’ip’ -- TCP/IP address of a process

’port’ -- TCP/IP of the port of a process

’revision’ -- versioning of the ’NameTableEntry’

str (self)

Returns the string representation of this ’NameTableEntry’.

getGUID(self)

Returns the GUID of the ’NameTableEntry’.

getIP(self)

Returns the dotted IP address of the ’NameTableEntry’.

getPort(self)

Returns the TCP/IP port associated with this ’NameTableEntry’.

www.manaraa.com

65

getRevision(self)

Returns the revision number with this ’NameTableEntry’.

incRevision(self)

Increments the revision number with this ’NameTableEntry’.

merge(self, other)

Merge this ’NameTableEntry’ with another one.

Parameters:

’other’ -- ’NameTableEntry’ to merge with

setGUID(self, guid)

Sets the GUID of the ’NameTableEntry’.

Parameters:

’guid’ -- new GUID (string/int) of the process represented

by this ’NameTableEntry’

www.manaraa.com

66

setIP(self, ip)

Sets the dotted IP address of the ’NameTableEntry’.

Parameters:

’ip’ -- a string containing a hostname, a dotted IP address,

or ’"*"’ to represent the first public Internet adaptor’s

address.

Notes:

The ’ip’ parameter will be converted into a dotted IP address

before it is stored.

setPort(self, port)

Sets the TCP/IP port associated with this ’NameTableEntry’.

Parameters:

’port’ -- new TCP/IP port number

www.manaraa.com

67

NameTable Class

init (self)

Initializes a ’NameTable’ object.

str (self)

Returns the string representation of the ’NameTable’ object.

addEntry(self, newEntry)

Adds a ’NameTableEntry’ to the ’NameTable’.

Parameters:

’newEntry’ -- ’NameTableEntry’ to add to the ’NameTable’

enumGUIDs(self)

Returns a list of all of the GUIDs represented by

’NameTableEntry’ objects in the ’NameTable’.

www.manaraa.com

68

lookupEntry(self, guid)

Looks up a ’NameTableEntry’ in the ’NameTable’. Throws

an exception when one is not found.

Parameters:

’guid’ -- string/int identifying the process whose

’NameTableEntry’ is being looked up

Returns:

A ’NameTableEntry’ corresponding to the guid.

merge(self, other)

Merge/add entries from another table into this one.

Parameters:

’other’ -- ’NameTable’ object to merge ’NameTableEntries’ from

Notes:

This method will throw a ’MergeException’ if you attempt to merge

incompatible ’NameTable’ objects.

www.manaraa.com

69

resolveTaggedObj(self, tObj)

Resolves the destination IP, destination TCP/IP port,

source IP, and source TCP/IP port corresponding to a

’TaggedObject’.

Parameters:

’tObj’ -- ’TaggedObject’ to resolve

Returns:

A tuple containing (dstIP, dstPort, srcIP, srcPort)

Notes:

Any of the resolvable elements of the tuple are filled in

with a None object.

www.manaraa.com

70

BIBLIOGRAPHY

[1] Epidemic Algorithms for Replicated Database Maintenance (1987), ACM Press.

[2] Bernstein, P. A. Middleware: a model for distributed system services. Com-

mun. ACM 39, 2 (1996), 86–98.

[3] Chow, R., and Johnson, T. Distributed Operationg Systems & Algorithms.

Addison Wesley Longman, Inc., 1997.

[4] Hewitt, C. Viewing control structures as patterns of passing messages. Tech-

nical Report 410, Massachusetts Institute of Technology - Artificial Intelligence

Laboratory, December 1976.

[5] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall Interna-

tional, 1985.

[6] Krakowiak, S. http://middleware.objectweb.org/. What’s Middleware.

[7] Lutz, M. Programming Python, 3rd Edition. O’Reilly, 2006.

[8] McMillin, B., and Arrowsmith, E. CCSP - a formal system for distributed

program debugging. In Proceedings of the Software for Multiprocessors and Su-

percomputers, Theory, Practice, Experience (September 1994), pp. 260–269.

[9] Natarajan, B., Gokhale, A., Yajnik, S., and Schmidt, D. C. Doors: To-

wards high-performance fault tolerant corba. In Proceedings of the 2 Distributed

Applications and Objects1. Introduction Proceedings of the 2 Distributed Applica-

tions and Objects1. Introduction Proceedings of the 2nd Distributed Applications

and Objects (DOA) conference (September 2000).

[10] Object Management Group (OMG). Portable Interceptor Specification,

OMG Document orbos edition ed. Framingham, MA, USA, December 1999.

[11] Object Management Group (OMG). Common Object Request Broker Ar-

chitecture: Core Specification. Framingham, MA, USA, March 2004.

www.manaraa.com

71

[12] O’Halloran, C. On requirements and security in a CCIS. In CSFW (1992),

pp. 121–134.

[13] O’Halloran, C. Category Theory and Information Flow Applied to Computer

Security. PhD thesis, Univeristy of Oxford, June 1993.

[14] Prechelt, L. An empirical comparison of C, C++, Java, Perl, Python, Rexx,

and Tcl. Technical Report 2000-5, Fakultät für Informatik, Universität Karl-

sruhe, D-76128 Karlsruhe, Germany, March 2000.

[15] Roth, G. F. Biologically Inspired Intrusion Detection in Distributed Systems.

Master’s thesis, University Of Missouri - Rolla, 2003.

[16] Serban, C. Run-Time Security Evaluation For Distributed Applications. PhD

thesis, University Of Missouri - Rolla, 1996.

[17] Siegel, J. CORBA 3 Fundamentals and Programming, 2 ed. John Wiley &

Sons, Inc., 2000.

[18] Sun Microsystems, Inc. Solaris Dynamic Tracing Guide. 4150 Network

Circle, Santa Clara CA 95054, January 2005.

www.manaraa.com

72

VITA

Ian Jacob Baird was born to Barbara and Jason Baird at Grand Forks Air

Force Base, North Dakota on January 5th, 1980. He was interested in computers

and programming at an early age, and this passion led him to the Computer Science

Department at the University of Missouri - Rolla, where he obtained his B.S. degree

in Computer Science in December 2002. He received his M.S. degree in Computer

Science in December 2007.

	A light-weight middleware framework for fault-tolerant and secure distributed applications
	Recommended Citation

	A light-weight middleware framework for fault-tolerant and secure distributed applications

